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The microscopic master equation of a system is derived within the framework of 
the path probability method (PPM). Then, by extending Morita's method in 
equilibrium statistical mechanics, the path probability function constructed 
microscopically can be systematically decomposed to result in the conventional 
path probability function of cluster approximation when correlations larger 
than the chosen basic cluster are neglected. In order to critically compare the 
master equation method with the PPM, the triangle approximation is treated by 
both methods for crystal growth models. It is found that the PPM gives 
physically satisfactory kinetic equations, while the master equation (supple- 
mented with a cluster probability in the superposition approximation) does not. 
The triangle PPM calculation considerably improves the result of the pair 
approximation for crystal growth velocity in the solid-on-solid model, and 
compares well with Monte Carlo results. 

KEY WORDS:  Path probability method; cluster variation method; master 
equation; crystal growth model; solid-on-solid model. 

1. I N T R O D U C T I O N  

The path probability method (PPM) devised by Kikuchi (1) is a natural 
extension of the cluster variation method (CVM) (21 in equilibrium 
statistical mechanics to nonequilibrium kinetics and has been applied 
successively to various phase transition and transport phenomena. ~3l For 
the nonequilibrium kinetics the master equation has also been used. 
Starting with the microscopic master equation of the system, Van Baal (4~ 
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showed that a coarse-grained master equation of Markovian nature could 
be derived with the assumption that microscopically different configur- 
ations in the same class have the same energy and the same occurrence 
probability at any time. He applied the coarse-grained master equation in 
the pair approximation to some problems and found that the results were 
the same as those obtained from the pair approximation in the PPM. In 
order to determine the transition rate in the pair approximation he used 
the cluster probability of superposition approximation in the sense of the 
CVM. We call Van Baal's treatment, which is supplemented with the 
cluster probability in the superposition approximation, the master equation 
method (MEM), to distinguish it from the PPM, although the same fact 
was also noticed by other authors. (5) Recently we applied both the PPM 
and the MEM to an Ising ferromagnet in the triangle approximation. (6) To 
our surprise, the two methods lead to similar but different evolution 
equations, though they have the identical equilibrium state expected from 
the CVM as a stationary solution. The problem of why the two (i,e., the 
MEM and PPM) triangle approximations give different evolution 
equations (in contrast to the two pair approximations, which lead to an 
identical equation) and whether this fact is essential or not have been left 
unsolved. 

In this paper we try to make clear the difference between the PPM 
and the MEM and show that the difference turns out to be significant in 
the crystal growth kinetics. (7) For that purpose the PPM is reformulated 
from the microscopic point of view. As a result, the relation between the 
PPM and the microscopic master equation, which is the starting point for 
the MEM, is established. Then the decomposed method of the space-time 
joint probability of the whole system is introduced along the same lines as 
that of Morita, (~) who decomposed the probability distribution of the 
whole system into the product of the cluster correlation functions in 
equilibrium statistical mechanics. It is shown that the neglect of cluster 
correlation functions larger than the chosen cluster leads to the conven- 
tional PPM (~) in the cluster approximation. This decomposition method is 
a kind of superposition approximation. It will be shown that a similar 
treatment is involved in the determination of the transition rate in the 
coarse-grained master equation in the MEM. 

We apply both the PPM and the MEM to the monolayer and the 
solid-on-solid (SOS) model (9) in the triangle approximation. Only the 
PPM can give physically reasonable evolution equations. In the SOS 
model the present calculation improves the result of the pair approxi- 
mation and the present result is in good quantitative agreement with that 
of the Monte Carlo simulation. 

In Section 2 the PPM is reformulated for the comparison with the 
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MEM. In Section 3 the monolayer crystal growth model is studied in the 
triangle approximation. The advantage of the PPM over the MEM is 
discussed. In Section4 the solid-on-solid model is treated as a direct 
application of Section 3. Section 5 is devoted to the conclusion and 
discussion. 

2. T H E  S T R U C T U R E  OF PATH P R O B A B I L I T Y  F U N C T I O N  

First, the statistical mechanical formulation is reviewed from the 
viewpoint of general cluster approximation. For clarity we consider an 
Ising system of N spins and write its Hamiltonian Yf({a}). Here {a} 
stands for one of 2 N configurations (al,  a2 ..... aN) with a i =  +1 ( i=  l-N). 
Consider an ensemble of L equivalent systems, each system of which has 
Yf({a}) in equilibrium with a heat bath of temperature T. Let Lp~N)({a}) 
be the number of systems having an N-spin configuration {a}. Since the 
number of total systems in the ensemble is L, we obtain the relation 
Tr{~} P~U)({a})= 1, where Tr denotes a summation over all spin states. 
The probability of the ensemble being found in the prescribed states 
{Lp]N)({a})} is, except for a proportionality constant, given by 

L~ 
Z = f I { ~  } (Lp~m({a}))! 1-1 (e-~({~})) LP~N'({~}) (2.1) 

Then the free energy per system is given by 

F =  _ m  kBT ln Z 
L 

= Z [J~'f({a})+kBTlnp~U)({a})] P~U)({a}) (2.2) 
(ol 

where E =  E / ~  ~({a})P~N)({a}) i s  the internal energy and 

S= --kB ~ P~N)({a})In P~N)({a}) (2.3) 

is the entropy of the system. The requirement of the maximization of Z or 
the minimization of F with respect to the P~N)({a}) leads to the 
equilibrium distribution 

P~N)({a}) = e-P~({r e-~({~})  

with fl ~ = kB T. The above procedure can be seen as applying the CVM to 
the system choosing the system itself as the basic cluster. 

Next, let us consider the change of state of the ensemble in a Short 
time interval At, that is, from time t to t + At. For this purpose, besides the 
system number Lp~N)({ff}, t) taking a configuration {a} at t, we introduce 
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Lp~N)({~}, t; {or' }, t+ At), which is defined as the number of systems hav- 
ing a configuration {or} at t and {a'} at t+At.  From above definitions, 
P]U)({a},t) denotes the one-time point probability function and 
P~2N)({Cr}, t; {cr'} , t+At) the two-time point joint probability function, 
respectively. There are some obvious relations between them: 

P{N/({a}, t )=  Tr P~'V)({a}, t; {a'}, t-i-At) 

P]N'({a'}, t + A t ) = T r  P~zU'({a}, t; {or'}, t+At )  

(2.4a) 

(2.4b) 

Tr Tr P~zN)({er}, t; {~'}, t + A t ) =  1 
{o} {o'} 

(2.4c) 

Hereafter we use the subscript 1 for the one-time point function and 2 for 
the two-time point function. Referring to Eq. (2.4a), when a state 
{Lp]'v)({er},t)} the ensemble at t is given, we have the transition 
probability of the ensemble (1) in the time interval At: 

T(t, t + At) = , H{.} HI~'} [Lp(2NA({a}, t; & }, t + At)]! 

• H Fl tl {o'}, t+At)]  

~ ~"~ (2.5) 

where W~:V)({~ }, t l {or' }, t+ At) is the transition probability of one system 
changing from { ~ } at t into { a' } at t + A t. 

The logarithmic form of the above expression is very useful for later 
purposes: 

In T(t, t + At)/L 

= Tr P~N)({O'}, t)In P]X)({O}, t) 
{o} 

+ T r  Tr {ln w{U)({a}, t] {c~'}, t+At )  
{~} {~'} 

- l n P T ) ( { a } , t ; { ~ ' } , t + A t ) } P T ) ( { a } , t ; { a ' } , t + A t )  (2.6) 

It is worthwhile to note that Eq. (2.6) is very similar in structure to the free 
energy expression (2.2). Thus, we may call 

So(At)= - T r  Tr p~m({cr}, t; {or'}, t + A t )  ln P~U}({a}, t; {~'}, t+At )  
{~} {,*'} 

(2.7) 
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the dynamical entropy, in contrast to (2.3), which may be referred to as the 
static entropy. When the two-time-point functions P(2N)({a}, t; {a' }, t+ At) 
are varied starting with the given distribution P]N)({a},t) at t, the 
maximization requirement of Eq. (2.5) gives the natural relation 

PV)({o}, t; t+ t) 

= w(N)({0"}, tl {a'}, t+At)P]Nt({a}, t) (2.8) 

which expresses the two-time point function in terms of the one-time point 
function and the transition probability. Since 

Tr W(N)({a}, tl {a'}, t+At )=  1 

the transition probability in a short time interval At can be written in terms 
of the transition rate w(N)({a} -* {#},  t) (the transition probability of the 
system per unit time) as follows: 

w(N)({a}, t] {(r'}, t+At)  

= w(N)({a} --* {a'}, t)At(1 --6{~>,{~,}) 

+ [ 1 -  ~ '  w(N)({a}--+ {a"},t) A,]6{~,,{o,} (2.9) 
{~,,} 

where 6{~},{~,} is the usual Kronecker delta symbol and Z '  denotes a sum- 
mation with {a"} = {a'} excluded. Substituting Eq. (2.9)into Eq. (2.8) and 
summing over all the configurations at t, we have an evolution equation of 
the distribution function of the system in the limit At --* 0: 

d 
dt P~N)( {a}' t ) =  -- Tr w(N)( {a} -+ {a'}, t)PIN)({a}, t) 

{o'} 

+ Tr w(N)({a ' } ~ {a}, t)P]N)({a'}, t) (2.10) 

Equation (2.10) is called a microscopic master equation of the system 
which denotes the conservation of probability of the system. Thus, we 
could say that Eq.(2.5) represents a variational function for the 
microscopic master equation. What is done above is to apply the path 
probability method (PPM)  to a system with the system itself chosen as the 
basic cluster. A function such as Eq. (2.5) is called the path probability 
function (PPF)  since variational parameters P(2N)({O'}, t; {a'}, t+At)  
determine a path for the time evolution of the ensemble. Up to this point 
no approximation has been introduced in the free energy treatment or the 
master equation derivation. Therefore either the CVM or the PPM  is not 
always an approximate method. 

However, for practical analytical treatments it is necessary to 
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introduce some approximations. In fact, the CVM and the PPM have been 
developed for systematic approximations. Generally speaking, the choice of 
the basic cluster determines the degree of approximation. In each choice, 
the most important step is how best to formulate approximately the 
entropy or the dynamical entropy. We can conveniently follow Morita's 
method, which was developed as an alternative formulation of the CVM. 

In order to review his method, we define the one-time point 
probability for an n cluster of (il, i2,..., i~) as 

P~nJ({a,},) = Tr p]N)({O-}) (n = 1, 2 ..... N) (2.11) 
{o} - {oi}. 

where (il, i2 ..... in) denotes any n set of N lattice points, {o,} n the set of n 
spins (o-il, a;>..., o-i,), and Tr{~} _ {,,}~ the trace over all N spins except for 
{o-i},. It is clear that the cluster probability function satisfies an obvious 
recurrence relation 

P{"-1)(o-i, ,---, o-i,-1) 

= Tr p~,0(o-ij ..... at,) (n = 2,..., N) (2.12) 

Then Morita's procedure consists in writing in P]n)({o-i}n, t) as 

lnP]")({o-},)= ~ lnPit ' (o- , )+ i lnA(2'(o-;, o-,) 
i--1 i < j  

+ ~ in A(3)(o-i, o-j, o-k) -t- .- .  
i < j < I c  

+ In A(n)(o-~ ,..., o-n) (n -- 2 ..... N) (2.13) 

where {o-},~(o-~, %,..., o-,,) of n spins is used instead of {e~}, without 
confusion and Ar represents a correlation function of n spins. 
Equation (2.13) can be solved successively starting from n = 2 to yield 

In A(2)(O-i, o-j) - In p]2)(o-i, O-j) - -  In p{1)(o-~) _ In P~l)(aj) 

In A(3)(O-i, o-j, o'k) = In p]3)(o-i, o'j, O'k) -- [In P{2)(oi, o-j) 

+ in p{2j(o-j, o-e) + In P~Z)(o-k, o-i)] 

+ In p]t~(o-,) + In P]~)(aj) + In P{~)(o-k) 

: (2.14) 

The relations shown here between the P functions and the A functions are 
sometimes referred to as the cumulant tranform or the M6bius 
transform/m) Let us define an n-cluster entropy by 

S(")(i,, i2 ..... i~) = - Tr P{")({o-,}~)In e]")({o-,}~) (2.15) 
{o~}. 
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It is clear from (2.14) that the cluster function 

?(n)(il, i2,.-., in)= -- Tr P~')({ai},)In A(')({ai}n) (2.16) 

is expressed as a linear combination of cluster entropies. From (2.13) and 
(2.16) the entropy of the whole system is thus written as 

S/kB=~7(1} ( j )+  ~ 7(2}(j,k)+ ... +7(N}(1, 2,..., N) (2.17) 
j j < k  

Thus, the entropy of the system can be expressed in terms of cluster 
entropies owing to (2.14). Morita's interpretation of the CVM is that the 
n-cluster approximation results when we choose 7(ml(jl ..... ]m) =- 0 for all m 
(>n) .  For example, the point approximation stops at 7(l)(j), the pair at 
7(210 ", k), and so forth. Here one comment is in order. It is easy to express 
the internal energy using cluster probabilities. {8) 

Up to this point we have discussed the one-time point probability and 
the statistical mechanical entropy. However, noting the structural similarity 
of the dynamical entropy in Eq. (2.7) to the static entropy, a completely 
similar treatment is also possible for the former. The two-time point 
probability for an n cluster of (il, i 2 ..... in) is defined by 

PC2"~({r n, t; {a;}n, t + A t )  

= Tr f r  P(2N)({O'}, t; {a'}, t+At )  (2.18) 
{o} {~i}, {o'}- {,,~}, 

which has the recurrence relation 

P ~ " - ' ( { o , ) o  1, t; {~;}n ~, t+Jt} 

= Tr  Tr  e~"~({a,}n, t; { a ; ) , ,  t+3t) (2.19) 

We assume a similar form of (2.13) for the two-time-point probability; 

= i In P~l)(~ri; a;) 
i = 1  

+ ~ in B(2)(cri, el; a;, aj) 
i < j  

+ ~ In B(3)(ai, aj, ~rk; ~;, r a'k) + ...  
i < j < k  

+ In B~"}({a},; {a '},)  (n = 2,..., N) (2.20) 
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where {a}n = {a,,  a2 ..... a,} is used for convenience. Making the M6bius 
transform as in (2.14), we can write ln B{')({a}n; {a'},) in terms of 
In P~2')({a}t, t; {a'},, t+At )  ( l=  1, 2 ..... n), successively. Defining an 
n-cluster dynamical entropy by 

S~)(il, i2,..., i,, At) 

= - Tr Tr P~2")({ai}n, t; {a;},, t+At )  
{ ~-i},, {o~}. 

x in P~z")({cri},, t; {a~},, t+At )  (2.21) 

and a cluster function corresponding to (2.16) by 

F(")(ix, i 2 ..... in, At) 

= - Tr Tr P~2")({a,},, t; {a;},,, t + a t )  
{~ {4}. 

x in B{n)({a},; {#}n) (2.22) 

we can express the dynamical entropy of the system by 

SD(At) = Z/~(1)(i, zlt) + ~, r~2~(i, j, At) 
i i < j  

+ y, F(3)(i,j,k, A t ) + . . .  +F{N)(1, Z,...,N, At) (2.23) 
i < j < k  

where some lower-order F~')({i},, At) are given explicitly by 

F{b(i, At) = S~)(i, At) 

v ~ ( i ,  j ,  At) = S ~ ( i ,  j, a t )  - s ~ ( i ,  At)  - s ~ ( j ,  At) 

F(3)(i, j, k, At) = So)U, j, k, At) - [ Sf)(i, j, At) 

+ S~)(j, k, At) + S~)(k, i, At)] 

+ [S~)(i, At) + S~)(j, At) + S~)(K, At)] (2.24) 

In a similar way as before, the n-cluster approximation is obtained when 
we make F~')({i}m, A t ) - O  for all m (>n).  

In order to complete the path probability function of n-cluster 
approximation, we have to express w~N)({a}, t] {a'}, t + A t ) i n  terms of 
cluster quantities so as to satisfy a detailed balance condition 

P(eN)({a}) w(U)({a}, t] {a'}, t + At) 

= p(eU)({O"})  w ( N ) ( { a t } ,  tl {a}, t+At )  (2.25) 
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where P~N)({O-}) is the equilibrium distribution function. However, the 
detailed balance condition is not enough to determine the transition 
probability uniquely. The concrete form depends upon individual physical 
phenomena, as will be seen in Section 3. 

At this point we make two comments for the purposes of later use. The 
first is the relation of this treatment with Kikuchi's original PPM. For the 
sake of concreteness let us consider a homogeneous Ising system on the 
two-dimensional hexagonal lattice in the triangle approximation. Then 
(2.17) and (2.23) give 

S(t)/kB = Ny(1)(1 ) + 3N7~2)(1, 2) + 2N7~ 2, 3) 
(2.26) 

SD(At) = NF~I)(1 ) + 3NF~2~(1, 2) + 2NF~3~(1, 2, 3) 

where the point, the nearest neighbor pair, and the smallest triangle cluster 
are chosen for the formulation. With the use of Eq. (2.24) and definitions of 
static and dynamical cluster entropies, the path entropy part of (2.5) can be 
rewritten in this approximation as 

T, ~ Ts (3) 

V/ {bond } 3 , \ 

= [ [{ t r i a n ~  {-p-oint }a,) 

x ( {bond}~ , i - t iN 
{triangle } 2 { point },] (2.27) 

where 

{point}a,= 1-I [LP(2~( a, t; a', t + At)]! 

{b~ H (2.28) 
{cr }2, {o-'}2 

{triangle}a, = 1-[ 
[~-}3, {~ }3 

and {-.. }, is the corresponding one-time-point probability; for instance, 

[LP(22)({~r}2, t; {a'}2, t+At )] !  

G' t; { 

{triangle},= H [Lp~3~({a}3, t)]! 
{,~}3 

The Stifling formula In X! = X(ln X -  1) is used for X >  1. We now observe 
that the right hand side of (2.27) is exactly the combinatorial factor derived 
in the original PPM. (6/ Since Morita's method for the static case is known 
to be equivalent to Kikuchi's CVM, the above example shows that the 
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present procedure for the path probability function gives, as expected, the 
same result as that of the original PPM. 

The second comment we make is that the occurrence probability of a 
cluster with a center spin surrounded by the nearest neighbor spins can be 
evaluated by making use of Eqs. (2.13) and (2.14). Let ao be a center spin 
and (or I ..... crz) its nearest neighbors. Rewriting Eq. (2.13) in the form 

In P~N)({a}N ) = In P~1)(60) -k ~ In A(2)(Oo, ffi) 
j= l  

+ i in A(3)(ao, aj, ak) + {terms without a o 
j < k  

+ O[ln A('~)({~ri},,), m > 3] } (2.29) 

and discarding the last terms in curly brackets, we obtain the cluster 
probability in the triangle approximation (6'12) 

p]l)(o.o ) ,_i~l P~3)(o0, o'i, oi+ 1) (o" z = o'i) (2.30) 

where P]Z+t)({a}~+,)is written for P{N)({a}N ). This is interpreted as a 
superposition relation, and similar relations can be written for any 
approximation. Relations of this kind are needed in the MEM as the 
"closure" relation, as will be shown below. 

It is worth noting that in the PPM all the ingredients of the 
approximation are contained in the path probability function at the begin- 
ning stage of the formulation. In the MEM, on the other hand, the 
"closure" relation, which is one of the essential ingredients of the method, 
comes not at the beginning, but somewhat later in the treatment. As was 
done by Van Baal and as is shown in (2.30), the needed relations can be 
supplied conveniently from approximation. 

3. M O N O L A Y E R  A D S O R P T I O N  M O D E L  

Let us consider a two-dimensional hexagonal lattice on which the 
concentration of atoms changes through the adsorption of atoms from the 
vapor and the evaporations of solid atoms into the vapor phase. (v'13) The 
local concentration of solid atoms on the ith lattice site is defined by C;, 
where Ci = 1 stands for an occupied site and Ci = 0 for a vacancy. The 
Hamiltonian is given by 

H =  - 2 J  ~ CiCj--LI#oZ C , (3.1) 
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where the first sum runs over nearest neighbor sites, and A/~o is the bare 
chemical potential difference between the solid and the vapor. With the 
help of the variable transformation a~=2C~-1, the Hamiltonian is 
rewritten except for a constant -N(zJ/4 + A#o/2 ) as 

J 1 
J t ' ( {a} )=  - ~  ~ aiaj-~Al~Za~ (3.2) 

(/j) i 

where z = 6  is the coordination number and Jlz=A#o+ZJ is the net 
chemical potential. Now a i =  1 corresponds to an occupied site and 
a i = - 1  to a vacancy. In the crystal growth model the adsorption is 
assumed to be determined by the net chemical potential difference A# and 
to be independent of the environment of the adsorbing site. On the other 
hand, the evaporation rate depends on the local configuration explicitly. 
When a spin ao of the system changes its direction, the energy change is 
given by AE(ao)=Ja o ~2ff=l O'i"• zJFlo0, where a~ ( i=  l-z) is the nearest- 
neighbor spin of ao. In order to meet the crystal growth model, the detailed 
balance condition requires transition rates for one spin flip: 

w ( - 1  ~ 1) = 0 e x p  H for adsorption 

(3.3) 
w(1 --, - 1 ) = 0 exp - K ~ a i for evaporation 

i=1 

where H = A#/kT, K= J/kT, and rR --- 1/0 is the microscopic characteristic 
time. It should be noted that in contrast with the relaxation process of 
magnetization, the transition rate has asymmetry forms for ~r o = +1. We 
apply the triangle approximation of the PPM to the above crystal growth 
model. Referring to Eq. (3.3), the kinetic part Tk(t, t+At) of the path 
probability function is taken (~) as 

[Tk(t, t+At)]l/L=I~ (OAt) Ne~k~" ~) [1 -- O(a) At ] Ne~k~.~)e. ~E (3.4) 
~ z  

where 

~AE= -NHp~I~(-1; 1)+zKN[Pf~(1, 1; -1 ,  1)-p~2)(-1, 1; -1,  -1 ) ]  
(3.5) 

is the energy change of the system due to adsorption and evaporation and 
1 -  O(a)At is the residual probability, to be determined self-consistently. 
The path entropy part 7", was already given by (2.27). Thus, the path 
probability function is given by T(t,t+At)=TsTk in the present 
approximation. Under the condition that the one-time point probabilities 
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{P~3~({a}3, t)} are given, there are six independent two-time point 
probabilities. Maximization of the path probability function with respect to 
these independent probabilities determines two-time point probabilities in 
terms of the P~3)({o'}, t) and given parameters in relations similar to 
Eq. (2.8). For example, 

Q1~(1, t; - 1 ,  t + ~ t ) = o  ~t ;+(1)~Ql~(1, t) 

P(21)(--1, t; 1, t + A t ) = O A t e n p ~ l ~ ( - 1 ,  t) 

Here 2+(1) z represents the environmental effect for evaporation, and the 
details will be discussed shortly. The probability for a site to remain 
unchanged is 

P(zX) (~r , t ;a , t+At )=P~l ) (o , t ) [1 -O(a)A t ]  for o=__+1 

Combining these three equations, we obtain O ( - 1 ) = e  H and 
0 ( 1 ) = ~ + ( 1 )  ~. 

Wada et al. el) discussed the relaxation process of magnetization using 
the triangle approximation of the PPM. In the previous work, however, the 
Hamiltonian was written as 

W = - J  2 a i a J - l z o H Z ~  • a,ajo~ (3.6) 
( ij} i ( #k ) 

and the transition rate of a spin flip was chosen symmetrically. Here the 
three-body interaction of the smallest triangle cluster was used for the 
introduction of the conjugate field for the three-body correlation. With 
minor changes the results of ref. 11 can be applied to the present problem. 
The order parameters of the system are defined by 

ml(t ) = T r  olP~l/(ol, t) 
O" I 

z Tr o-to2P]2)({o}2, t) (3.7) m2(t) = 5 {~}2 

m3(t ) = 2  Tr a10203p]3)({o}3, t) 
{~,}3 

The changes of the order parameters in At can be obtained by 

Am~(t) = -- Tr P~ll(cr; -or) 
o- 

Jinx(t)  = 2z r r  [ Q ~ ( o ,  a ;  - . ,  G) - P ~ ( - a ,  o-; cr, a ) ]  (3.8) 
Cr 

Am3(t ) = --2z Tr [P(~3)(cr, or, o; or, o, --or) -- 2p(23)(o -, a, - 0 ;  a, -o3 -o-) 
~r 

+ P(23)(6, --0, --0-;--0", --0-, --0)] 
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The most probable path results of the previous paper tell us the following. 
We define a moment-generating function 

G(K,(a), K2(a), K3(0"))= ~ 013~1~(a) 2+ (a)  ~ 
f f  

(3.9) 

where 

1 [P?)(o,  J '2 )  
; '+(a)  = 2  I_ P?~(~, 0") 

+ 

p~3)(0", --O', --0") 

P?~(0", - a )  

P?~(0", -0", - a t ]  ~ 
-2;  J 

4PI3)(a, a, - o - f  

p?l(a, ~) p~(,~,  _ 0") 

~- D(a ) ]  

(3.10) 

and 

p?/(0") = e~,~(a, t) e - ' ~ ' ~  

fi]2)( a, 0"1)= p~2~(0", al ,  t) e K2~~ 

/~]3)( 0'' 0"1' 0"2) = PI3)( 0", o1, 0"2) e-a:3("~ ,,,~,~2 

(3.11) 

with K1(_+)= +__~oH/kT, K 2 ( + ) =  +J/kT, and K 3 ( _ ) =  ~d/kT. Then we 
can obtain the evolution equations of order parameters as 

dmi(t) _~+ ~ G(KI(0"), K2(a), K3(a)) ( i=  1, 2, 3) (3.12) 
dt ~= _1 OKi(a) 

Here one comment is in order. These rate equations can be obtained in two 
ways. First, after substituting P(23~( {0" }, t; {a'}, t+At)  obtained from the 
maximization of the path probability function into Eq. (3.8), we compare 
them with Eq. (3.12) directly. Another is the way in which we derive the 
master equation in the triangle approximation by making use of the path 
probability function] 1~) The master equation is given by 

e c ? ~  = ~ exp - 2 e  ~?K-~0") - 1 G(K(0")) Q(m, t) (3.13) 
a=_+l 

where m = (ml, m2, m3), K ( a ) =  (Kl(a), K2(a), K3(o')), e =  l/N, and 
Q(m, t) is the probability density of m at t. Application of the system size 
expansion (141 to Eq. (3.t3) yields Eq. (3.12). 

Let us return to the monolayer model. Since there are only two 
parameters H and K in the present system, in order to use the above result 
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it is taken that after differentiation in Eq. (3.12) the parameters {Ki(a)} are 
always taken to be 

K ~ ( - 1 ) = H ,  K2(1)=K, K,(1)=K2(-1)=K3(+I)=O (3.13a) 

The final kinetic equations are written explicitly as 

dml(t)_ 20[p]1)(_ l, t) e H -  P~I)(1, t )2+(1 )z] 
dt 

d d Z - - Z ( t  t) = 2zO FP]I)( e H p]2)( _ 1, 1) - p]2)( _ 1, - 1) 1) 
L p~l)(_ 1) 

- p ~ ' ) ( 1 )  ~ + ( 1 ) :  

PI3)(1, 1, 1 )/P(:)(1, 1 ) -- p~3)(1, -- 1, - 1 )//3(2)(1, - 1 )3 • 
J 

dm3(t) 

D(1) 

4p]3/( - 1, - 1, I) 
d t - 2 z O I p l l ) ( - 1 ) e U ( 1 -  ~ - i ) -  ) 

- P]l)(1)'~+(1)z 1 - 4 p ] 2 ) ( 1 ,  1 )p ]2~ (1 , -1 )D(1 ) )~+(~  

(3.14) 

Let us examine the dm~/dt equation. Since the concentration of atoms 
P~X)(1, t ) i s  expressed by P]I)(1, t)=�89 the first term of the 
right-hand side shows the adsorption of atoms and the second term 
represents that the evaporation occurs with the environmental effect 2+ (1)z 
if the site is occupied. The important result is that the environmental effect 
for adsorption gives exactly 2 + ( -  1)z = 1, as is expected physically. 

At this point we compare the above results obtained from the PPM 
with those from the coarse-grained master equation derived by Van 
Baal. (4'5) The coarse-grained master equation can be written as (6) 

dQ.(m, t) 
g 

dt 
= - t rEe (m;  3M(oo))  o-(m, t)] 

+ t r [~(m - e  AM(oo); AM(a0)) o-(m, t)] (3.15) 

where o-(m, t) is the probability density of m at t and AM(ao) denotes 
changes of Nm when a spin Oo flips. The key question is how to determine 
the transition rate #(m; AM(oo)) in the triangle approximation. The most 
natural procedure is to take into account the probability of a center spin 0o 
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surrounded by its nearest neighbors ( ( 7 1  . . . . .  O - z )  and the transition rates 
(3.3). Thus, combining Eq. (2.30) and (3.3), we write ,)(m; AM(o-o)) as 

#(m; AM(ao)) = OP~ 1)(o-o, t) e -K~(~176 ~o 

>( 
i =  ~ P~2)(o-o, o-i, t) e x2(~~ ~O~i (3.16) 

where the same convention as stated in (3.13a) is used for the Ki(ao). By 
using the e expansion (~4) to Eq. (3.15), one can derive the kinetic equations 
for the order parameters by 

din(l) 
dt = Tr AM(o-o) ~(m; AM(ao) ) (3.17) 

This equation can be rewritten as 

d m i ( t )  8 
- dt - ~SK,(o-o) (-~(K(o-~ (3.18) 

where a moment-generating function G(K(o-o)) is defined by 

G(K(ao))= Tr #(m;AM(o-o)) (3.19) 
o- 1 ~ o- z 

By making use of the fact that ~(m; AM(o-o)) is transformed as 

w(m; AM&o))= 0b~I)(o-o) Tr A~~ ~r2)A*~ o-3)'"A~~ al) 
q~ ~ ey z 

(3.20) 
with 

A~~ o-i+1) = P?~(o-o, o-i, o-i.l)/[P~2~(~o, o-i) P~2~(o-o, o-i. 1)] 1/2 

we can write G(K(o-o))in terms of two eigenvalues of {A~~ ai+ 1)} as 

G(K(o-o)) = ~ 0fi~u(o-o) [2 + (aoy + 2_ (ao) ~ ] (3.21) 
a 0  

where 2 (o-)=2+(o-)-D(o-) is the conjugate root of 2+(o-) appearing in 
(3.10). In comparison with (3.9), in addition to 2+(ao) z there appears 
another term 2_(GoY. While 2 + ( - 1 ) = 1 ,  2 _ ( - 1 )  depends on the 
p~3)({o-}, t) explicitly. This fact means that in this treatment not only the 
evaporation of solid atoms, but also the adsorption process depends upon 
the environment in spite of the requirements that the adsorption is assumed 
to be determined only by the chemical potential difference. Thus, for the 
crystal growth kinetics only the PPM yields the correct kinetic equations. 
The reason for the failure of the MEM is judged to originate in the super- 
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position approximation in (3.16) which is needed for the purpose of 
closure. The trouble is that there is no guiding principle for writing the 
closure relation. 

4. SOLID-ON-SOLID  M O D E L  

The previous results of the monolayer-adsorption model can be easily 
extended to the solid-on-solid (SOS) model, (9) which has been used as a 
multilayer model for crystal growth from the vapor. The present SOS 
model is defined as a hexagonal lattice which can be filled with atoms, but 
in such a way that in the upward direction from solid to vapor, normal to 
the hexagonal layer {001 }, a solid atom can occupy only a site above and 
adjacent to an existing solid atom. This so-called SOS condition excludes 
vacant sites inside the solid part and overhangs at the solid-vapor inter- 
face. Let us divide the crystal into monatomic layers with N sites each, 
parallel to the hexagonal face, and assign a number l ( - oo < l < oo ). The 
Hamiltonian is given by 

H s o s = ~  - 2 J  ~ C(Z)(7. (l) A~o (4.1) 
l <(j> 

where C} l) = 1 (--0)  stands for the ith site on the lth layer being occupied 
(vacant). With o}t)=2C} t~- 1 and z = 6 ,  the Hamiltonian is rewritten, 
except for a constant, as 

. a (  0 . ( J2 1 i ) - -  (7 i g j -~ Hsos(~t } ) = ~  ~ ( ' )( ' )--  A#~cr}0 (4.2) 
</j> 

We apply the PPM to the SOS model in the triangle approximation. We 
could repeat the PPM calculation of Section 3 in each layer, attaching an 
additional superscript of the layer number to all the one- and two-time 
probabilities such a s  r~ll)(ff(l), t) and P(21t)(cr (~ t ; a  (t), t + A t )  ( I = - o o  
to oo). With the definition that Npt ( t )=NP~m(1 ,  t ) -NP~II+I)(1 ,  t ) i s  the 
number of surface atoms finding themselves in the / th  layer, the SOS con- 
dition is taken into account in the path entropy as 

r3 [To(t, t + At)]l /L= EXP,'0(1; -1) ] ,  1)]! 
l ~  - - o 0  

1 
• 

[ Np(~)(t) - NP~m(1; - 1) - NP(2 l~+ ~)( - t; 1)]! 

-I' [NPit')(cr)] ! (4.3) 
x [NP(2m(a; or)I! [NP(2m(o; - a ) ] !  
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where the time parameter t is suppressed since no confusion is expected. 
The path entropy correction T,. represents the fact that only surface atoms 
out of /th layer atoms can take part in evaporation and adsorption 
processes. Then the path probability function of the present system is given 
by the products of those of all the layers given in Section3 times 
T~.(t, t + At). The maximization with respect to independent two-time point 
functions yields the evolution equation of the system. The moment- 
generating function in t h e / t h  layer is then given by 

G(~176 = ORp t l(t){exp[K~O( - 1)] } 2~)( - 1) z 

+ ORp,(t){expE--K~O(1)]} Z(+t)(+ l y  (4.4) 

where the convention concerning the KIo(~ ) is also used. This function 
should be compared with the monolayer generating function (3.9). That is, 
the /th layer superscript is attached to all the quantities and p~m(_ 1, t) 
and P~m(1, t) are replaced by the fraction of surface atoms p~ 1(/) and 
p~(t), respectively. With the use of this generating function, we have the 
following set of equations for crystal growth: 

- -  - 20REp,_ l(t) e H -  p,( t)  2~)(1)'] 

- -  z O  R [p, l ( t )  e "  p ~ 2 o (  _ 1, 1 )  - p ~ 2 , ) (  _ 1, - 1 ) 

L p~la( _ 1 ) 

z/P]3')(1, 1, 1)e K p~3,)(1, 1, - -1)e  ~:'] 

dm~~ 

dtR 

dm~( O 
dtR 

x [D"~(1)] -1] 

dm~O(t~)--2zOR[ p  ̀dtR l(t) e" (1 

- p , (O , ~ ( l y  

4p]30( - 1, - 1, 
P- # i-i5 1)) 

P{30(1, 1 , - 1 )  2 "~] 

P~2')(1, 1) P~2Z}(1, - ~ D(')(1) 2~)(1)JJ'  
x ( 1 - 4  

(4.5) 

- o r  < l <  oo 

where the subscript R for time t is introduced for a relaxation process. 
With the help of the CVM we have the following free energy F 
corresponding to these rate equations: 

F/ X k  r =  ~ [ z K p ~ 2 I ) ( I ,  - 1 ) -  Hp~ ll)(1) + ~ (p ,) 
l 

- 3 Tr 5~ 2 Tr s (4.6) 

822/53/5-6-6 
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where 5~ = x(ln x - 1 ). It can be confirmed that the configuration of the 
minimum free energy satisfies the steady-state condition of Eq. (4.5). 
Further, it is possible to take care of inter- and intralayer diffusion 
processes if the adsorption force e H due to the chemical potential difference 
is replaced just by 

(n 1 z (4.7) e " ~  1] 
l =  oO 

and OR by 0~ in the kinetic equations (4.5). (15) This means that atoms 
evaporated from different layers can contribute to the adsorption. It should 
be noticed that though this exchange process does not change the total 
concentration Zt  P~lt)( 1, t), it increases the growth velocity of the crystal. 

R/k; 

0.4 

0,3- 

0.2  

0.1- 
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kT/J = 2.0 
Pair approx. 
P . . . . . .  Xs= 0 W 

7'- . . . .  Xs=2 / / /  
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Triangte approx. / 
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T Xs= 0 / 
/ 

T" Xs= 2 / M" 
Monte Carlo Simul. / /  . ~ ' ~  
M A Xs=0 / /  / "  
M n Y~= 2 / /  ^ / "  
Witson - Frenke[ -Values / /  ,,~,-'" 

W - - - - -  / /  , / " ' "  M 

/ ,,." . . .  T 
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/ /  / /  . " 
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/ , / "  
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/ ~i" 

o:1 0.2 o.a 0:4 
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Fig. 1. The average growth rate R versus driving force H at temperature k T / J =  2.0 for the 
SOS model. The results of the triangle approximation (T) with and without diffusion are 
shown along with those of the pair approximation (P) and Monte Carlo simulation (M). 
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The growth rate of the crystal is defined as the combined processes of 
relaxation and diffusion: 

d 
R = ~ , = ~ _  P~U)(1, t) (4.8) 

where d/dt = d/dtR + d/dto and d/dtD denotes the contribution from the dif- 
fusion process. The Wilson-Frenkel growth rate representing the maximum 
growth rate is defined by 

RWF = k~-(1 - e  - n )  (ko ~ = 0 R e  H) (4.9) 

The diffusion length X s is defined as X~-zOD/OR since an isolated a tom 
diffuses a distance X s in its lifetime 1/0R. The results in the present 
approximation are shown for two typical temperatures together with those 
of the pair approximation and the Monte Carlo simulation in Fig. 1 
and 2. (15) The Monte Carlo simulation on the present model is carried out 

R/k; kY/J=2.5 
Pair approx. 

0.4- P ..... Y,.s = 0 /W 
F y- . . . .  Xs= 2 /~ 
Triangte approx. /~ Ivr' 
m Xs=O / / /  .,,~'~" 
T - - X s  = 2 / /  , /  
Monte Carto Simut. / /  

0.3 M z~ Xs=O / / 7 , 
M,A ,v,s=2 / /  / ~M 
Wilson-Frenket-Vatues// / . . . ,~T 
W - - -  / / J  ~ , . . / ~  

/Z Y // j '"  

0.1- / /  , "" 

0 03 02 O~ 0,'4 0.'5 

H = 

Fig. 2. The average growth rate R versus driving force H for temperature kT/J= 2.5 for the 
SOS model. Only the temperature is changed from the kT/J = 2.0 in Fig. 1 to the value of 2.5 
here. 



1100 Wada, Kaburagi, Uchida, and Kikuchi 

by using the method of Gilmer and Bennema. (16) For low temperatures and 
weak driving forces the growth rate in the present calculation is improved 
considerably compared with that of the pair approximation. 

5. C O N C L U S I O N S  A N D  D I S C U S S I O N  

We have shown that when we apply the PPM to the model system 
choosing the whole system itself as the basic cluster, we can obtain the 
microscopic master equation of the system as a result of the extremum 
principle. Thus, the PPM also gives a variational principle for the 
microscopic master equation. Since the microscopic master equation is the 
starting point of the coarse-grained master equation derived by Van Baal, 
the common basis for his approach and ours is thus established. In order to 
compare the PPM and the coarse-grained master equation method 
(MEM), we follow the technique which Morita developed when he decom- 
posed the distribution function of the whole system in his reformulation of 
the CVM. In the decomposition scheme, to neglect correlations of clusters 
larger than a chosen basic cluster exactly corresponds to the coarse grain- 
ing of information in the MEM and leads to the path probability function 
usually obtained by the conventional combinatorial arguments. In other 
words, the path probability function thus obtained is the one derived by 
the PPM using the chosen basic cluster. The above decomposition scheme 
seems to be a kind of superposition approximation. Since in the MEM 
there is no systematic guiding principle to determine the transition rate for 
any degree of approximation, a similar superposition approximation is 
adopted by Van Baal and by us for the occurrence probability of clusters. 
However, in the MEM the superposition approximation is used in a local 
sense, while in the PPM that approximation is used for the whole system 
and the variational principle should also be supplemented. This difference 
reveals itself in the triangle approximation. This is related to the following 
fact. Consider the cluster occurrence probability of a center spin o o 
surrounded by its z nearest neighbor spins. With the use of the local super- 
position approximation the trace procedure over the nearest neighbor spins 
gives the correct center spin probability P]l)(~o) in the point and the pair 
approximation but not in the higher-order cluster approximations such as 
triangle approximation. On the other hand, the PPM seems to guarantee 
this correct center spin probability in any degree of approximation. This 
explains the fact that the PPM and the MEM lead to identical results only 
in the point and the pair approximations. We applied both methods in the 
triangle approximations to the crystal growth from the vapor phase on the 
monolayer model, where the adsorption is assumed to be determined only 
by the chemical potential difference Ag but the evaporation rate depends 
on the local configuration explicitly. For the reason discussed above, in the 
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triangle approximation only the PPM can give the evolution equations 
consistent with the physical situation. The same problem appears on the 
solid-on-solid crystal growth model, in which only the surface atoms of the 
solid part could take part in the growth kinetics. Thus, we conclude that 
the PPM is a justifiable method to give evolution equations of the 
system in the cluster approximation, while the MEM supplemented with a 
cluster probability of superposition approximation leads to an unphysical 
consequence in the triangle approximation unless the closure relation can 
be improved in the future. 

Finally, in the SOS crystal model our treatment in the pair 
approximation reduces to that of the MEM by Saito and Miiller- 
Krumbhaar. ~7) Compared with their results, the present calculation in the 
triangle approximation considerably improved the unphysical metastable 
region at low temperatures for small driving force A#/kT and the present 
result is in good quantitative agreement with that of the Monte Carlo 
simulation. 

ACKNOWLEDGMENTS 

We thank Profs. H. Sato and T. Ishikawa for continual discussions. 
One of the authors (K. W.) thanks H. Tsuchinaga for cooperative work on 
the SOS calculation and also Prof. T. Asahi and his laboratory members 
for encouraging discussions. 

REFERENCES 
1. R. Kikuchi, Ann. Phys. 10:127 (1960); Phys. Rev. 124:1682, 1691 (1961); Prog. Theor. 

Phys. (Kyoto) Suppl. 35:1 (1966). 
2. R. Kikuchi, Phys. Rev. 81:988 (1951). 
3. A. Suzuki, H. Sato, and R. Kikuchi, Phys. Rev. B 29:3550 (1984); Y. Ozeki and 

T. Ishikawa, J. Phys. Soc. Japan 55:3931 (1986); T. Ishii, H. Sato, and R. Kikuchi, Phys. 
Rev. B 34:8335 (1986). 

4. C. M. Van Baal, Physica 111A:591 (1982); 129A:601 (1985). 
5. Y. Saito and R. Kubo, J. Stat. Phys. 15:233 (1976). 
6. T. Ishikawa, K. Wada, H. Sato, and R. Kikuchi, Phys. Rev. A 33:4164 (1986); K. Wada, 

T. Ishikawa, H. Sato, and R. Kikuchi, Phys. Rev. A 33:4171 (1986). 
7. Y. Saito and H. Miiller-Krumbhaar, J. Chem. Phys. 70:1079 (1979). 
8. T. Morita, J. Phys. Soc. Japan 12:753; J. Math. Phys. 13:115 (1972). 
9. D. E. Temkin, Soy. Phys. Crystallogr. 14:344 (1969). 

10. A. J. Schlijper, Phys. Rev. B 27:6841 (1983); G. An, private communication (1988). 
l l. K. Wada, T. Ishikawa, and H. Tsuchinaga, Physica 142A:38 (1987). 
12. R. Kikuchi, Phys. Rev. B 22:3784 (1980). 
13. R. Kikuchi, J. Chem. Phys. 41:1653 (1967). 
14. N. G. van Kampen, Can. J. Phys. 39:551 (1961). 
15. K. Wada, H. Tsuchinaga, and T. Uchida, in Proceedings of "Dynamics of Ordering 

Processes in Condensed Matter," Kyoto, Japan (1987), to be published. 
16. G. H. Gilmer and P. Bennema, J. AppL Phys. 43:1347 (1972). 


